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THERMODYNAMIC APPROACH TO THE EQUATION OF
STATE OF A MAGNETIZED FERMI GAS
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Abstract. In this paper we have rederived the equations of state for a magnetized Fermi gas by
generalizing the physical definition of the pressure. We have also given a simplified derivation of
the energy eigenvalues of a free electron in a magnetic field, based on the use of simple harmonic
oscillators. Physical interpretations of our results are presented. Possible astrophysical applications
are also discussed.

1. Introduction

According to classical electrodynamics the magnetic field of a current carrying plasma
increases as R~ 2, where R is a scale factor. If we apply this criteria to the gravitational
collapse of a star which in its main sequence possesses a moderate field of a few
thousand gauss, then the final field strength is of the order of 10'* gauss, assuming
that the initial radius is of the order 10'' cm and the final radius after collapse
(neutron star) is of the order of 10° cm. Classical electrodynamics will break down in
such a strong field as the spin magnetic-field interaction energy is of the order of mc?
when the field strength exceeds 10'* gauss.

In a series of papers (CaNutO and CHIU, 1968a, b, ¢; CHiu and CANUTO, 1968)
we have derived the equations of state of a relativistic electron gas in an intense
external magnetic field (a magnetized Fermi gas). Our calculations were based on the
use of energy-momentum tensor T,,, for which the exact eigenfunctions of the Dirac
equation were used. However, the use of quantum electrodynamics in obtaining
thermodynamic functions, though intrinsically fundamental, does not offer a direct
insight into how the equation of state differs from that of an ordinary Fermi gas in
the absence of a magnetic field. Itis the purpose of this paper to rederive these equations
of state, by analogy with the more physical definition of thermodynamic functions,
such as the pressure and the internal energy. This paper thus does not contain new
results, but gives a more physical interpretation of our previous results which contain
the formal use of field-theoretical techniques based on quantum electrodynamics.
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2. Properties of the Eigenvalues of a Free Electron in an
External Magnetic Field. The Critical Field

Let us first consider a free, non-relativistic electron of charge e(e>0) in an external
magnetic field H described by a vector potential A (x, y, z), [H=curlA]. The Hamil-
tonian is given by the well-known expression (LANDAU and LiFsCHITZ, 1958)

1
%=2—m(p—(e/c)A)2. (1)

If the magnetic field is constant in time and uniform in space, the vector potential A
is given by:
A=1H xr. (2)

Consider the case in which H is along the z-axis, i.e., H,=H,=0, and H,=H. Then
Equation (2) gives:
A, =—3%yH; A,=1xH; A,=0. 3)

With Equation (3) the non-relativistic Hamiltonian 5 can be put into the following
form:

H = Imol + ymo} + tmv?, (4)

where
1 eH '\ 1 eH \ 1 5
sz};l(px—'%y>ﬂ Uy=a<l)y+§gx>: Uz'—“;lpz- (5)

v,, v, and v, are the generalized velocities of a free electron in an external magnetic
field.
We now calculate the commutation relation between v, and v,. Remembering that

[x, y]=[pw P,] =0, } ©
[pxa x] = [pya y] = h/l
we easily obtain:
i eH
o)== g, 7
[0 0,] = ™

which vanishes for the case H=0, as expected. The effect of a magnetic field is to
cause the velocities of a free electron to become non-commutative. Physically this
means that both v, and v, cannot be measured simultaneously to arbitrary accuracy.
Classically the trajectories of an electron with v,=0 in a magnetic field are circles for
which the two components of the velocity perpendicular to the field are correlated. A
measurement of one component (say, v,) will cause the circle to be displaced, thus
altering the other component of the velocity (say, v,).

Multiplying both sides of Equation (7) by m(h/mc?), the left-hand side becomes
the commutator between two quantities with the dimensions of a magnetic-field
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independent coordinate ¢, =v,/(h/mc*) and a momentum II,=mv,. We obtain:

A - 17 h eH h hH g
— — =M — = - —
Lo 0] m me? Lews 11, i m’c mc* iH’ ®)
whereas we have introduced the ‘critical magnetic field’ H, given by
m?c’ 13
H, = el 4.414 x 10"~ gauss. )
e

Equation (8) implies that when H> H,, ordinary non-relativistic quantum mechanics
is violated. This is illustrated in the following two examples.

First, when H> H,, the classical radius of gyration of an electron, r; (Larmor
radius) which is given by equating the centrifugal force mv?/r to the magnetic force
evH]c, i.e.

T

mev h

C

=1

|

rL c > (/}Lc - h/mc) (10)

=

eH me

becomes less than the Compton wavelength of the particle. This is not allowed in
ordinary relativistic quantum mechanics since no particles can be confined to a dis-
tance less than their Compton wavelengths, otherwise Zitterbewegung phenomenon
has to be taken into account (SAKURAI, 1967; NEwTON and WIGNER, 1949).

As a second example let us consider the magnetic moment of the electron due to
its circular motion around the magnetic field. We have

, ev
[= T o
2nery,

, (11)

which is the product of the area of the circular orbit nr,? times the current. Using
Equation (10), we have
A 12
W= lp s (12)
where ug=eh/2mc is the Bohr magneton. Again, when H> H_, u< uz which is not
allowed, since the minimum value of the ratio u/uy is expected to be unity.
We shall now obtain the energy eigenvalues. Let us introduce the following
variables (LaNDAU, 1930):

P=vm'*; Q= - v (13)
with which Equation (7) takes the form:
[P, Q] =h/i.

If we regard P and Q as the new momentum and coordinate of the system, then P and
Q satisfy the usual commutation relation (6). Using Equation (13), the nonrelativistic
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Hamiltonian given in Equation (4) becomes:
A =4P? + §(eH[me)* Q* + fmuZ, (14)

which represents a two-dimensional harmonic oscillator in the x-y plane with free
motion in the z-direction. The frequency is eH/mc, and the energy eigenvalues are

known to be:
1

ehiy 1
E=h D+ —pP=—(n+1+—p?
w(n+ %) 2mp me (n+1%) m p
(15)
2 H 1 1 2
= mc i(n+7)+2—m-pz.
So far we have neglected the spin. The spin can be included in Equation (15) by
adding to Equation (1) the so-called Pauli term (SAKURAI, 1967):

upo-H, (16)
where o is the spin operator, giving an additional term to the energy eigenvalues:

1 eh 1 LH
~-— Hs=_mc"—s, s==41, a7
2 mc 2 H

c

which, when added to Equation (15), gives the final result as:

2

: H
E(p,, n, s)zzgr;—l—%mczﬁ(Zn—l—l +3). (18)

c

The obvious generalization of Equation (18) to the relativistic case gives

H ‘ 1/2
E(p, n,s) = {mzc4 + cp? + m*c* 7 2n+1+ s)} , (19)
which is the correct expression for the energy eigenvalues of the Dirac equation for a
free electron in an external magnetic field H, discussed in CaANuTO and CHIU (1968a),
where references to original works can be found.

3. The Equations of State

A usual physical picture of the pressure is the force derived from the exchange of
momenta of gas particles with the wall of a container in which the gas is confined. In
CanNuTo and CH1U (1968a) we calculated the energy-momentum tensor for an electron
gas in an external static and uniform magnetic field:

Tuv = %hc [WT’Yuévw - 5&?%‘” (20)

using the exact wave-function solutions of the Dirac equation. As is well known, the
diagonal components of the energy-momentum tensor, T,,, T,,, and T, are just

pressures in x-, y-, and z-directions (LANDAU and LiFsHITZ, 1962). We shall now show
that the usual physical picture of the pressure is preserved even in the presence of a
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magnetic field, provided that a reinterpretation and generalization of the velocity is
used.

Because of the cylindrical symmetry of the problem, T,.=T,,. Let P ) be the
pressure in the direction perpendicular to the field and let P, be the pressure in the
direction parallel to the field. We then have

P.L=Txx=Tyy5
Py =T..

From elementary thermodynamic considerations we have (LANDAU and L1FSHITZ,1962):

P, = {mu v,y = {muy v, }

PH = <mvz.vz> ’ (21)

where the symbol {...> stands for an average over a statistical ensemble. If the system
is isotropic (no magnetic field) it is obvious that P, = P. Because of the presence of a
magnetic field, the system is now anisotropic and therefore P, # P. However, it is
easily seen that in the absence of interaction, the spatial components of the non-
diagonal elements of the energy-momentum tensor vanish.

Consider now the quantity mv?2. Its generalization to include relativistic effects is

made through the simple relations:
2 2 2.2 2 2
mec®  moic ¢ Py
= ul = — (meu,)* = »vp', (22)
E JZ(1—-p*) E E

mp? - —
JI-F
where f=v/c and

p,=meu,, u,=uv,f1— B, u=1/J1-p,

H=x,y,z1t.

p, is the momentum four-vector (LANDAU and LiFsHITZ, 1962). Analogously

2 2
2 €Dy 2
mvy — ,  mul—
E

2 2
Cp:

(23)

Comparing now Equation (19) with the corresponding one for the case of H=0, i.e.,

E=/m’c* + pi+’py + c’p2 (24)

we see that in the presence of a magnetic field,

H
czpf+czp§—>m2c4ﬁ(2n+1+s); cp, = cp,. (25)

[

We therefore have (see also Equation (21)):

2p? H /2n+1+
P = (m2y o (PN w2t (TR (26)
E H,  \E(p,, n, s)
2.2 2.2
*p? c2p?
P, = (mp> _( P\ 27
| <’””Z>”< E> <E(pz,n,s)> @D
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The statistical average, as indicated by the symbol (...}, is achieved by multiplying
the quantity of interest by the Fermi distribution function and summing over all
states. The Fermi distribution function F(p,, n, s), is given by

F(psn,s)={1+expB[E(p., n,s)—i]}"" (28)

where f=(kT)™!, Tis the temperature and ji is the chemical potential. We thus obtain
the expressions for P, and P as follows:

mer L Z Z @t L) me ) 29)

P —_—
E(p,, n,s)

N[—a

s=—1n=0 Pz

s=~1n=0
w, is the degeneracy of the level n. The summation over p, is easily transformed into an
integration over p, through the usual relation:
[e0] @
1 1 D.
Z—»znﬁ dpz:,ﬁ d(n;) (31)
Pz — 0 — @

The calculation of w, is a little more involved and can be done in the following way
(Kuso, 1965). When H=0, the number of levels in dp,dp, at p, and Dy 1s given by

dp.dp,
(27th)2 '

(32)

/ n=2

H=0 H# 0

Fig. 1. The coalescence of free particle states into equally spaced harmonic oscillator energy states
in the presence of a magnetic field.
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In the presence of H these levels coalesce into those of a harmonic oscillator, as
shown in Figure 1. The degeneracy of each of these levels is therefore given by

integrating Equation (32) as follows:

1
w, = (2%7)2 J\ dpx dpy,

Px? + py?
2m

A< <B

where (cf. Equation (15))

H H
A=mc*> —n; B=mc*—(n+1).
H H

[ c

Introducing the cylindrical coordinates (p, ¢):

=pcos¢; p,=psin¢g; dp,dp,=pdpdd,

= (znth J i3 2@ = 4

A<,f<B

we obtain:

or finally {1 1H
T onitH,

Substituting Equation (31) and (35) into Equations (29)-(30), we obtain:

0 L LT s
S D)L C I e

s=—1n=0 —c

Rewriting Equation (19) in the form (x=p,/mc):

) H
E(x,n,r)=_[1+4+x +2§(n+r—1) s=2r—3,
we finally obtain:

e () T T T

r=1,2n=0 —o0

+
. 1 me*H d x2 F( )
= 5 3 T, X ———~ s, ),
T4z 72 H E(x, n,r) S

r=1,2 n=0 —w

where (8= fimc?, u=ji/mc?)
F(x,n,r)={1+expB[E(x,n,r)—u]}"".

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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Equations (39) and (40) are identical with those obtained in CANUTO and CHiU (1968a),
using the energy-momentum tensor and Dirac wave functions. In CANUTO and CHIU
(1968a) we have also shown that Equations (39) and (40) reduce to the well-known
expressions for a Fermi gas when most electrons are in states of quantum number
n> 1. The thermodynamic properties of a magnetized Fermi gas (MFG) have been
extensively studied in CANUTO and CHIU (1968b) as well as the magnetic moment of
the system (CANUTO and CHIU, 1968c¢). Finally the energy and particle densities are
trivially obtained using the same method of taking statistical averages, and they are:

U = energy density

12m§ 1 Z Z fE(xnr)F(x n, r)dx 42)
47'5 i. H

r=1,2n=0 —o

N = particle density

LYY (e -

r=1,2n=0 ~w

Equations (39), (40), (42), and (43) constitute the complete set of equations of state of
an MFG.

4. The Anomalous Magnetic Moment

The eigenvalues given by Equation (19) do not include the anomalous magnetic
moment of the electron, which has been shown to be

p=py(1 +o21)  (a=1/137). (44)

Solutions to the Dirac equation with an anomalous magnetic moment have been
obtained by TERNOV et al. (1966), and we have studied the properties of an electron
gas with an anomalous magnetic moment in a magnetic field (CHIU et al., 1968). We
have found that the thermodynamic properties of an electron gas (e.g., pair-creation
equilibrium) are substantially altered when the magnetic field H is of the order or
exceeds (4n/o) H,~10"® gauss. It is not known whether magnetic fields as strong as
that can exist in nature. Further, the solution of TERNOV et al. (1966) may not be
applicable to field strengths of such a magnitude, since their solution is based on the
concept of a point magnetic moment, while electrodynamics predicts that the anom-
alous magnetic moment has a form factor of quantum-electrodynamical nature.

5. Astrophysical Applications

Generally one does not expect fields stronger than 10'* gauss to be achieved in
collapsed objects. In order to have a field of 10'® gauss, for example, in a neutron
star, the initial field must exceed 10° gauss (assuming a scale factor of 10° in a collapse
process), while the maximum field observed is of the order of 3 x 10* gauss. In white
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dwarfs one generally cannot expect a field strength exceeding 10° or 10'° gauss. As
shown previously, a magnetized gas will behave as a classical gas when states of large
quantum numbers are occupied. Thus, it is expected that even in the most strongly
magnetized objects only the envelope will be altered by the presence of a magnetic
field. However, in condensed objects like the white dwarf or the neutron stars the
properties of a thin envelope determines almost all observable properties (e.g.,
luminosity, pulsation, etc.).

6. Discussion and Conclusion

In this paper we have rederived the equations of state of a magnetized Fermi gas. The
ordinary quantum-mechanical commutation relations are not valid in a magnetic
field. The usual commutation relation [v,, v,]=0 is no longer valid. This is because
the magnetic field exerts a force on a charged particle. Although the magnetic force,
being perpendicular to the direction of motion, cannot impart or extract energy from
the particle, it does alter the direction of motion of the particle, causing the particle to
move in circular orbits. The two components of the velocity of the particle per-
pendicular to the magnetic field thus become correlated. In fact, a suitable trans-
formation (13) (not a canonical transformation) transforms the Hamiltonian of the
particle (in the non-relativistic approximation) into that of a simple harmonic
oscillator. From this transformed Hamiltonian we thus readily obtain the energy
eigenvalues of a non-relativistic electron in a magnetic field. An obvious relativistic
generalization of the non-relativistic energy eigenvalues gives the correct expression
for the relativistic case.

Using the relativistic energy eigenvalues, new velocities redefined in Equations
(5) and (13), and the usual thermodynamic definition of pressure, we obtained the
stress-energy tensor for a magnetized Fermi gas. The internal energy and particle
density are trivially obtained from simple considerations. The new velocities defined in
Equations (5) and (13), with proper relativistic generalizations, should be useful in
obtaining transport properties in a magnetized Fermi gas.

“Del senno di poi son piene le fosse” (“Hindsight is easier than foresight”) (MANZONI,
1827).
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